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ABSTRACT

Mathematical procedures are outlined to obtain a self-
consistent solution for the space charge dependent potential
distribution of the orbitron gage. A computer program was
used to obtain a set of geometric and electrical parameters

for developing an orbitron gage.
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RESEARCH AND DEVELOPMENT PROGRAM ON ORBITRON
ULTRAHIGH VACUUM GAUGE

By F. J. Brock

Norton Research Corporation

SUMMARY

The previously developed orbitron theory was reformulated
mathematically. such that 1t 1s amenable to machine solution.
A computer program was written and all subroutines,; functions,
and operations tested The Fortran source code directs the
machine to produce self-consistent solutions for the space
charge dependent potential distribution, space charge density
distribution, and the functional i1nverse ot the electron radial
position as a function of time, for an arbitrary set of pre-
scribed input parameters consisting of geometrical parameters
and the ratio of orbit injection kinetic energy to anode voltage.
The program is wraitten for an arbitrary number of iterations
with continuous testing for convergence and orbit stability.
The program also calculates many 1nteresting parameters, such
as orbit period, stability parameteyr, value of the electron
Hamiltonian, electron average velocity, total number of electrons
in the rotating space charge cloud and the ion production rate
The program was used to obtain several families of con-
vergent, self-consistent solutions in a parameter survey with
the value of the electron Hamiltonian taken as family parameter.
A machine experiment was conductred, the results of which strongly

imply that the solutions obtained are unique.



The conditions of optimum charge storage and ion production
rate for each family of solutions are obvious from the results
obtained. It is concluded from the solutions obtained that a
relatively high total charge may be stored stably in the or-
bitron rotating electron cloud, and therefore relatively high

ion production rates may be obtained,

INTRODUCTION

In a previous report (ref, 1), the orbitron principle, the
orbitron electrical and geometrical configurations and the
rotating electron cloud configuration and behavior were dis-
cussed in some detail; and a mathematical procedure was out-
lined for obtaining & self~consistent solution for the space
charge dependent potential distribution and a lst iteration
approximate solution was worked out., Subsequently. the mathe-
matical procedure for obtaining a self-consistent solution of
the orbitron problem by numerical, iterative techniques.has
been developed more completely. Machine programs have been
written, tested, and used to obtain many selt-consistent or-
bitron solutions for a range of geometrical, electrical, and
electron injection parameters,

The mathematical procedure used in this work 1s funda-
mentally that previously outlined, however the analysis has
been reformulated to facilitate translation into machine
language; and 1n minimizing the computer time required to ob-
tain a convergent solution, 1t was found necessary to in-
troduce several major modifications in the procedure:; also
the mathematical formclation has been further developed and
is now essentially complete For these reasons, and to pro-

vide an intelligable transition from the analytical results




to the computer program and the numerical results, it is con-
sidered necessary to present the mathematical formulation in
its entirety, even though this unavoidably leads to some
repitition of previously presented material.

The orbitron consists of two coaxial cylinders, between
which is applied a potential difference which produces a
logarithmic potential distribution within the interelectrode
space and a central force field which is attractive for elec-
trons., An electron stream is injected into the interelectrode
space with injection parameters such that the electrons execute
open, ellipse-like, stable trajectories in the (r,0) plane
while drifting in the z-direction., Auxiliary electrodes at the
ends of the cylinders produce mirror fields which reflect the
electrons such that they oscillate along the z-axis,

It is assumed that the charge density is entirely eletronic;
that the length of the cylindrical electrode assumbly is suf-
ficiently large compared to its diameter that end effects may
be neglected and that the charge density distribution is uniform
along the z-axis; that the charge density distribution is uni-
form in the 6-direction (that injection parameters resulting in
nonuniform, stationary charge distributions in the 6 direction
are disallowed):; and that electrons are injected into stable,
bound trajectories, only (that injection parameters outside the
stable trajectory range are disallowed).

Under these assumptions. the Poisson equation and the con-
tinuity equation become ordinary differential equations in one

dimension, r .

SELF-CONSISTENT ORBITRON THEORY

The rotating electron cloud which exists in the inter-

electrode space has an outer boundry which coincides with the



outer turning point of the electron trajectory The electron
cloud obviously occupies only a part ot the interelectrode
space, It 1s mathematically convenient f{but with no loss of
generality) to assume that the electrons are injected into
orbit at the outer turning po:nt and that the injection angle
(angle between the radius vector and velocity vector) 1is T1/2 .
It turns out, physically, that these values are also the most
convenient values of these twy injection parameters. The in~
jection parameter set 1s thus reduced to one free parameter
the angular momentum

To provide for gecometrical and electrica. scaling of the
machine results 1t 1s necessary to convert the radial coordinate
and potential distribution to dimensionless variables. In the
following treatment this 1s done by normalizing the radial co-
ordinates with respect to r, , the value of r at the outer
turning point of the electron trajectory, and by normalizing
the potential distributicn with respect to V , the anode
potential. Thus the dimeunsionless radial zoordinate 1s X = r/ry

and the dimensionless potential distribution 1s ¢$ix}) = ¢(r/r )/V .

Potentia! Distcibution

Developing a seltf-consistent solution to: the space charge
dependent potential distribution reguires the simultaneous
solution of the system of differential eguations and applicable
boundary conditions which describe the potential distribution as
a function of the space charge density distribution, the space
charge density distribution as a function of the radial com-
ponent of the electron velocity, and the radial component of
the electron velocity as a function of the space charge dependent
potential distribution, but constrained such that only stable

trajectories are allowed.



Since the rotating electron cloud occupies only a thick
cylindrical region coaxial with the electrode assembly cylin-
drical axis of symmetry such that there is a space charge
free region between the anode and the inner boundry of the
electron cloud and a space charge free region between the
outexr boundary of the electron cloud and the outer cylindrical
electrode, the Poisson equation must be applied to each region
separately and then the three solutions matched at their
boundaries,

Figure 1 is a schematic of the orbitron, applicable to
the space charge dependent potential distribution problem,

The curve ¢ (x) 0=0 is the space charge free potential dis-

tribution. The curve ¢p is the modification to the potential
distribution introduced by inserting the space charge distri-
bution p(x). The self-consistent space charge dependent
potential distribution is thus the sum of these two components,
provided that the space charge density distribution is that
which results from the same potential distribution,

There the self-consistent, space charge dependent poten-
tial distribution must satisfy the following system of dif-
ferential equations, matching equations, and boundary equations:

Xd¢1(X)
%%{H_ }=0,xi§x5xi, (1)
x do, (%) r_2p(x)
%é?‘{d-; }.-.-_CEL_ Pox, Sx 21, (2)
x dés(x)
}l{%{a— }=0,15x.<.xO (3)
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¢1(Xi) = ¢2(Xi) ’ (4)
d¢; (x) d¢o (x) 5
T ® |, ()
i i

$5 (1) = $3(1) , (6)

deo, (x) do 3 (x)
dx =1 JCEY x=1 )
¢, (X;) =1, (8)

and

$2(X,) = 0 . (9)

Suppose the total number of electrons in unit length

(measured along the z-axis) of the rotating electron cloud is

NL , then

1
2 = -
2m| r_ p (%) xdx eN; . (10)
X,
1
It is convenient and useful (later in the computer pro-

gram) to define the dimensionless charge integral g (x) such

that




X eN

2 l/.‘__.—.:__E
j r, plx")x"dx” = 57 g(x) . (11)
X,
1
It is clear that
g(Xi) =0 (12)
and
gtl) = 1. (13)

Similarly, the 2nd integral over the charge density may be de-
fined as h(x) , such that

- x
X X :
dx” | r 2p(x"")x"7dx"" = - ML g - L a? h(x) . (14)
;‘;.— [s} 2 X' - z'ﬂ ‘
X .
X, X, i
1 1

h(x) is also dimensionless and it is clear that

h(xi) =0, (15)

and using the mean value theorem and Eq. (13) it follows that
(ref, 2)



h(l) £ log [%—] , (16)
i

for physically realizable electronic charge density distribu-
tions., It is also convenient to define the dimensionless para-

meter

eNL
eV ! (17

o]
m

where V = anode voltage (assuming the outer cylinder

voltage is zero),

The solution to the system, Eg. (1) thru Eq. (9), for an
arbitrary charge density distribution, is

xo logx—
1og§— gxi
¢ (x) = x — Q {log X, + h(l)} x— + Xy < x S Xy (18)
log-i2 logxg
i i
X X
log-;-g logY;
o (x) = x~ "~ 9 l:log Xo+h(l)] % - hx)} , X Ix 21, (19)
log—g log—2
Xy Xy
Xo X
logz= 1 logg=
p3(x) = 7 " Q logiz - h(l) X l < xS xo . (20)
log—2 log 2
Xy Xy



-y

Charge Density Distribution

The charge density distribution may be derived from
statistical reasoning. Consider the motion of a single electron
along its trajectory s . The fraction of the orbit period dur-
ing which the electron is in the infinitesimal interval ds is
dt/t , where 1T 1is the orbit period and dt is the infinitesimal
interval of time, considered a function of s , that the electron
spends in ds . The position probability distribution of the
electron, Y (s) , is the fraction of the period spent in ds
per unit length along the trajectory,; that is

. (21)

The increment of electronic charge that may be associated with

the trajectory increment ds is therefore

dQe(s) = - e Y(s)ds . (22)

Referring to Fig. 2, the increment of charged contained
in the cylindrical volume between r and r + dr and length

L (sufficiently large to contain the entire trajectory, is

dQe(r) = pe(r)dv = I pe(r)2nrdr R (23)

10






where pe(r) is the mean charge density, considered a function
of r , associated with a single orbiting electron. Since the
trajectory passes twice thru the volume element it is clear
that dQ_ (r) = 2dQ_(s) and since ds = [1 + (d6/dr)2]*dr and
v(s) = [1 = (do/dt)2(dt/dar)2]% # , it follows that

TLp (r)r + —5 dr = 0 , (24)
Tr(r)

o
where r(r) 1is the radial component of the electron velocity.
Therefore the mean charge density associated with one electron

is

L, (25)
rr(r)

= - &
pe(r) T TLT

and the charge density distribution resulting from N, electrons
per unit length is

olr) = - —2 L | (26)

r%(r)

and written in terms of the dimensionless coordinate x , the

charge density for an arbitrary radial velocity component is

12



L 1
p(x) = = = ——— (27)
TTE, x2(x)
where
1
T = 2r dx R (28)
o ]
r(x)
s

Electron Trajectory

The radial component of the electron velocity must satisfy
the system

dd, (r)

m(¥ - r62) = e I , (29)
and
%? {mr2§} =0 . (30)
Eg. (30) has the solution
§ = 2, (31)
mr 2

13



where £ 1is the electron orbital angular momentum which may be
expressed in terms of the electron kinetic energy at the outer
turning point T(xr,) , by the equation

22 = 2mry2T(xr,y) . (32)

Substituting Eqg. (31) and Egqg. (32) into Eg. (29), integrating,
and applying the boundry condition

r(r,) =0, (33)

gives the radial component of the electron velocity

r2

2 r?2
{:‘%(r)} = I%S {¢2(r) - <I>2(r0)} - %E(ro){_o - 1} . (34)

It is convenient to introduce the dimensionless kinetic energy,

defined as

T(ro)
ev

T =

. (35)

The radial component of the electron velocity, for an arbitrary
potential distribution, written in terms of the dimensionless

coordinate x is given by

14



3
2eV] {¢2(x) - ¢,(1) - T(x~2 - 1)};i . (36)

Z(x) = [T

Integrating Eq., (36) with respect to x gives the func-

tional inverse of the trajectory, t(x) . Thus
X
2 (x') - 62(1) - T[(x")"2 - 1]} dx
X
t(x) i . (37)
T 1
s =%
J{¢2(x) - $2(l) - T(x"2 - l)} dx
X,
1
where Ty = half-period is obtained from Eg. (28), and t = 0
has been taken to coincide with the inner turning point.
Observing that
1 de _ 6
AT (38)
o r

Egs. (31) and (36) may be used to obtain 6 as a function of =x .

Thus

b
g% = E; {¢2(X) - ¢(1) - T(x"2 =~ l)} ’
X

(39)

15



where Eg. (32) has been used to eliminate £ in favor of T .

The azimuthal coordinate (as a function of x) is then given by

X
- ax”
J{¢2(X’) - 6p(1) -7 [(x")"2 - 1]} 7;¥7?
0(x) _ *i
- . (40)
[¢] 1
% ny
{¢2(X) - ¢,(1) - T(x7? - 1)} _’?f
X
X

i
where @% = half-orbit angle, and 6 = 0 has been taken to co-
incide with the inner turning point.
Trajectory Stability
Orbital stability requires that the incremental force, re-
sulting from an infinitesimal displacement of the electron from
its trajectory by some perturbation interaction, must be directed

such that it tends to restore the electron to its original tra-

jectory, that is

df = - kdr , (41)

16



where k = restoring force per unit displacement, Using Eq.
(29), Eg. (31) and Eg. {32), the above equation may be evaluated
in terms of the electric field and kinetic energy at the outer

turning point, the least stable point in the electron trajectory,

r 2 d24 3 (r)
df = d(m¥) = - {6T(x,) —— - e dr . (42)
r dr?

Orbital stability therefore requires

r 2 d2p;(x)
{ST(IO) : - e 3- }

r dr?

>0 ., (43)

r=r°

From the homogenious Poisson equation it follows

d2¢ ;3 (x) do 3 (r)

- -
roar

. (44)
dr?

r=r +
o

Combining Egs. (43) and (44), it follows that stable trajectories
are those for which

er de, (r)
T (ro) > - T a—r— - (45)

17



This is the outer turning point kinetic energy lower bound. The
upper bound of the outer turning point kinetic energy is that
associated with a circular trajectory having the same radius,
thus

er do, (r)
T(ro) < - 5 dr . (46)
r

[
R

It therefore follows that bound, stable electron trajectories
are those for which

er dé, (r) er dé, (r)
- T o= < T(r,) S- = g ' (47)

r=ro r=r,

Eg. (47) may be written in a more useful form by differentiating

Eg. (19), observing that gg(x) = ﬂ%ﬁl , evaluating the result

at r=r_  (x =1) , applying Eq. (13), then substituting the re-
sult into Egq. (47), for the electric field, and finally applying
Eq. (35), which gives

18
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X

2T logs>
1 Xy
3 < T - S 1 . {(48)

1 - Q[logr - h(l)]
1

It is convenient to introduce the dimensionless stability

parameter o such that

x0

27T lng——‘
ag = — = (49)
N 1l - Q[iogi— -~ h(1)

1

al

which has the range, for stable, bound electron trajectories,
given by

%<a <1 . (50)

Eq. (49) is the orbital stability criterion and only those tra-
jectories which satisfy this criterion are given further con-

sideration.
Computational Procedure
In preparation for converting the results of the preceed-
ing analysis to a computer program it is well to examine some

of the ways that the computations necessary to produce a solu-

tion to the orbitron problem may be executed.

19



An immediately obvious procedure is to substitute for the
radial component of the electron velocity ¥(x), from Eg. (36)
into the equation for the charge density distribution, p(x)
given by Eg. (27), and then substitute the result into the ap-
plicable Poisson equation,; Egqg. (2), which gives a differential

equation for the charge dependant potential distribution

-
d¢p (x) eN {¢2(x) - ¢,(1) - T(x~2 - l)}
i“‘ X T = L - (51)
ax ax 27T€E 1 ’
=%
{¢2(X) - $,(1) - T(x=? - 1)}

X,
1

3
. . T {2eV}™ . . .
in which 7?;{—5—] has been eliminated by using Egs. (28) and
(36). It is, in general, more convenient to work with integral

equations in computer computations rather than differential
equations. Further, even if the starting function for ¢, (x) on
the right in Eg. (51) were taken as the charge free potential
distribution, the machine solution for ¢,(x) on the left would
involve a double integration.

An alternative procedure which goes directly to the integral
equation is to substitute for «r(x) from Eq. (36) into p(x) ,
Eg. (27), and then substitute the result into Eg. (19). This

procedure gives the integral equation

20



$2 (%)

x x” .Y
QG-1 [ Qﬁ_ I Po(x77) = 9o(l) = T[(X“)“2 - g]} dx~”

X, X.
i 1

+

(52)

in which G has been evaluated using Egs. (28) and (36)

1
5 -3
G =y [?.E‘l} = J {¢2(x) - $,(1) - T(x~2 - 1)} ax . (53)

X

i

This equation is compatable with conventional machine technigues
and could, in fact, lead to a self-consistent solution for the
space charge dependent potential distribution. However it imposes

21



an unnecessary computational burden on the machine and is
therefore not an efficient procedure.

The only part of the self-consistent potential distribution
which is unknown is the modification of the space charge free
potential distribution resulting from insertion of the space
charge. It will be shown below that this 1s principally de-
pendent on h(x) . Therefore, a more efficient machine procedure
is to substitute for £(x) from Eg. (36) into p(x) , Eg. (27),
and then substitute the result into Eg. (14) which gives the
potential distribution modification resulting from the space

charge more directly., The result of this arithmetic is

-~

X X
- -%
h(x) = G-1 %‘,— {¢z(x”) - 0,1 - T[(x")'2 - ]} ax”” , (54)

X, H
1 1
where G 1is obtained from Ege. (53).,
For machine use, it is convenient to define a new dimention-

less function £(x) , which is constructed from Eg. (36)

L -
£ix) = [2_9_‘7J S {rbz(x) - $,(1) - T(x"2 - 1)} ° {55)

¢, (x) to be used i1n Eg. (55) must be taken from Eq. (19), thus

22
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o (x) = ¢2(1) =

1
logz log=
___§: + Q[logxo + h(l)] ;0 - o[h(1l) - h{x)] . (56)
logs— _ logg=

Xy Xi

h(x) +to be used in Egq. (56) is given by

X

h(x) = J gx) B, (57)
®q
where
%
g(x) = Gg=1 j f(x")dx~ , (58)
Xy
and
1
G = J f(x)dx . (59)
X

The computational loop is now closed, h(x) 1is generated
from f(x) which depends explicityly on h{(x) , and if the system
is convergent an iterative procedure may be used to obtain h(x)

¢2(x) 1is not only a function of h(x) but also of Q ,

which in an iterative process must be regarded a variable parameter,

23



Q may be determined by recalling that the radial velocity goes

to zero at the inner turning point

(4

r(xy) =0, (60)
or

£(x;) = 0 . (61)
Substituting Eg. (56) into Eq. (55) and the result into Eg.
(61), evaluating at x = x; , and solving for Q , gives

. Xo 1
T(x;72 - 1) logiz - log;:

1 %o 1 ]
logX, log;— - h{(l) logg— - log;—

1 1 i

It is obvious from this result that the only variable on which Q
depends is h(l) , since T , x; , X, and X, are considered pre-
scribed parameters. T must however, be prescribed such that it
satisfies the stability criterion, Eg. (49). The maximum value
of T is associated with the maximum value of oy . Indicating
the maximum value of T by the subscript M and using Eg. (62)

to eliminate Q , gives

24



(63)
[}ogéf—— h(l)]
1

X
1 2 1 -3 : 1
2 lOgXo 10g§— - h(l) [1092: - logx—lzl + (Xi 4 - l) [logx—l - h (l)]

1

Therefore T must be prescribed such that

T
M <

T

— < T ST (64)

for the electron trajectories to be stable,

The conditions for charge optimization may be studied by
combining Egs, (49) and (62) to eliminate T 1in terms of the
stability parameter a_ , giving an expression for Q which
depends only on directly prescribed parameters and the self-

consistent solution for hi(x)| _, . The result is

OLS 2 l (65)
T(Xi - l] - logr

1

X,
1

1 logh + 25 (x,77 = 1)logke - h(1) |1oga® + E(x,-2 - 1) - logk
ogX_ logi— + 7= (xy - 1) ogiz - h(1l) og§:~+ f—(xi - 1) - log

25



All the pérameters in Eq. (651 are independent except, of course,
h(l) which depends implicitly on x; and o4 . Since g(x)
decreases everywhere except at the turning points as o, in-

creases,; h{l) decreases as o, 1increases for fixed x; . How-

ever the product ag h(l) 1increases with o, for fixed Xy o
It thus turns out that the numerator of Eg. (65) increases faster
than the denominator, from which 1t follows that Q increases
with o for all other parameters fixed

The variation of Q with X, may be determined as follows:

Since h(l) is an implicit function of x, (for oy fixed),
the mean value theorem may be applied to render the dependence
explicit (at least in part), The integral expression for hi(l) ,

Eq. (57), may then be written

1 1

h(l) = gix) = = g(z) gﬁ = g(@)logif , (66)
1

X %5

in which ¢ must be considered a function of x; since x; is
now the only variable in the definition of h(l) , that is

¢ = t(xy) . Considering @ :(xlﬂ tc have only 2nd order de-
pendence on x. , to lst order the dependence of h(l) on Xy
is given by logéf . Substituting Egq., (66} into Eg. (65) and

1
taking the derivative of Q with respect to X, gives
< 0 (67)

which implies that Q 1s a decreasing function orf X, - From

this result it follows that the number of electrons per unit

26




length of the rotating space charge cloud is maximized (with
respect to xy) for x; (the inner turning point) approaching
X; (the anode).

In some applications of the orbitron principle to practical
devices it is important to know the value of the electron

Hamiltonian., It is given by
H=T(r) - e d,(x) ., (68)

and since H is a constant of motion it may be evaluated any-
where along the trajectory. It is convenient to evaluate it
at the outer turning point, r,(x=1) . Substituting from Eqgs.,

(17), (19), (35) and (49) into Eq. (68) gives

H _ % 1
ev ~ -z log X1 . (69)

from which it is clear that the value of H depends only on
the outer turning point kinetic energy, the stability parameter
a; , and X, (the ratio of outer cylinder radius to outer
turning point radius).

The computational procedure required to obtain a self-
consistent solution for the space charge dependent potential

distribution may now be outlined:

1.0 Prescribe X, , x; and X, .

2.0 1Initially, set h(x) = h (x) = 0 .,

27



3.0 Evaluate Ty wusing Eq.
2.0 above),

4,0 Prescribe T .

(63), (h, (1) = 0 from

5.0 Evaluate Q, = Q using Eq. (62), (h,(1) = 0 from
2.0 above).
6.0 Perform J,,x, 21terations (J = 1, 2,°""Jp,y) as
follows:
6.1 Evaluate:
1
Gy, = J fJ_l(x)dx :
Xy
take £f£(x) from Eg. (55), and

o (x) = d2(1)

which Q = Q]

take QO from
alsc in which
but if J-1 =

from 2.0 above

6.2 Calculate and save (for

from Eg, (56) in
but if J-1 = 0

-1

5.0 above, and
hi(x) = hJ_l(x)

0 take hg(x)

all n ; n=1, 2,°**npax)

X

n
= g-1 .
g5_; (%) GJ‘l_J £, (x)dx ;

X

take fi{x) as in 6 1

note that Xy =

1
above,

x. and X =
1 Dmax
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6.3

10.0

Calculate and

hJ(xn)

take 93-1(

note

Test hJ(xn)
Evaluate Qj

6.3 above.

Evaluate ag

6.3 above and

Test og in
J

J and return

Plot the last

ngax(xn) as
n=l' 2’oa-nmax
Calculate ¢

and hjy . (x,)

save (for all n § n=1,2,--sn 4:

X

n
dxn,
- 951 )z -
n

Ri
xn,) from 6.2 above,
that x; * x; and %, = 1.

for convergence,

from Eq. (62) using h;(1) from

from Eq.
Qg

(49) using hj(l) from
from 6.5 above.

Eq. (50); if satisfied, add 1 to

to 6.1. Repeat until J = J .

max
computed values of the function

a function of x

n for all n ;

Xn)
for all n :

from Eq. (12) using Qy

n=1l, 2,°*"n .,

Plot the function ¢2(x,) as a function of x,
for all n; n=1, 2,-**np 4 -
Calculate p from Egs. (27), (28), and (55)
2 Q f (x_)
_ o p(xn) _ Jnax ‘max °
eV ] x -
J n
max
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11,0 Plot the function

as a function of X for all n; n=1, 2,°°°n 44 -

12.0 Evaluate

5

. . T 2
2T, <v> = L+ —; [f(x)] ax
X

using fJ (x) .
max

Since £f(x) 1s unbounded at x = Xx; and x =1 , elementary
machine integrationm routines do not yield precise values for the
integral of f(x) , if the integration increment is constant;

Ax, = const, for all n Further an iteration procedure involv-
ing multiple integrations is not altogether compatable with the
more sophisticated curve-fitting integration routines, It was

therefore decided to use a variable increment, trapezoidal in-

tegration routine such that Ax is small where

dx

and Ax 1is large where |%§| 1s small. The integration in-

1s large

crement is computed from

30



n n-1 '
where
. _ oL )TN
x = % 0+ 2(1 - x4) sin {7 & } ’
max
for
nmax
n = 5
and
= - - b _n
X =%+ (1 xg) |1 2 cos {2 = } '
max
for

n>—-2—-..

The integration routine was tested by evaluating

which diverges at x = 1 in a way which is similar to the

divergence of f(x) at x = 1. It was found that the value of

31



The above integral could be computed with adequate precision
using about 500 integration increments; the machine results be-=
ing a few parts in 10° less than the exact value.

Table I defines the computer source code symbols in terms

of the symbols used in the analysis.

TABLE I
MACHINE PARAMETER ANALYTIC PARAMETER
r
X , XF({N) X X = —]
r
e}
ol
XI X, {x‘ = —iJ
1 1 ri
1 Xo [xo = l)
R
CXI X, |x. =2
i 0 r,
ALCXI log X,
ALCXO log X,
1
ALRCXI log &
i
XO
ALCXOI log <2
Xy
1
ALRXT log;{_..
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TABLE I (CONT.)

MACHINE PARAMETER ANALYTIC PARAMETER
T(ro)\
T Tt = eV )
eN, )
Q Q |Q = ETTEVJ
1
2eV € 1
GUMAX G G = f(X)dX = [_m—] 21’.‘0
X3
X
GF (N) gi(x) |g(x) = G-lj £(x7)dx”
X5
glx) = £ (x)
Y
X
HF (N) h(x) |h(x) = [ g(X’)d—’f—
X
Xy
q’z(x)
P b (%) |0y (%) 5
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MACHINE PARAMETER

RHO

RHOMN

PXI

PXO

P/P@)0O

No+L* (=[SVORDT] [Q/GUMAX])

<Vy>* (=SVORDT)

TABLE I (CONT,)

ANALYTIC PARAMETER

r 2p(x)| r _2p(r)
o _ o _ -1 E(x)
eV eV = QG x—-}
r 2p(x)
eV min
®(%y)
¢o(x4) [02(x5) = 7
( ¢, (1)
¢, (1) L¢z(l) = 7
%, (1)
g 2o9%,
logig
i
5
%é (< 2 2 %
\Y ng o(<v>) TE vy
7%; <v>
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The following computer program was written to perform the
calculations outlined in the previous section. The program is
written in Fortran for a time=-shared machine (G.E. 265). The
complete program, after compulation in binary machine code, is
larger than the machine core. The program is therefore written
in two parts: The first part of the program (ORBl2), cal-
culates the functions g(x) and h(x) , executing a prescribed
number of iterations. It also computes some other needed func-
tions and evaluates a number of parameters, and executes a
number of tests on the validity of the results. Some of these
results are printed during program execution but most of the
data are written on disc files prior to completion of the pro-
gram The second part of the program (ORB22),; then continues
the computations where the first part ended (it must be called
manually). The second part of the program begins by reading
the filed data back into the machine, plotting g(x) ,; then
calculating and plotting pfx) and ¢,(x) using the final
h(x) computed in the first part of the program. The data are
plotted by a digital plotter, the resolution of which is 0.005
inches (California Computer Products, Model 210 Digital Plotting

System) and which is driven by a GE265 time-shared computer.
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ORB12

100 SFILE AL,XL1/XL2sGL1/7GL2,HL1/HL2

112 DIMENSION XF(5080)sGF(500),HF(500)

120 PI=4.0%¥ATANC1.0)

130 PIO2=2.0%xATANC1.0)

140 200FORMAT(I3s1X5E15.9)

150 201FORMAT(I2, 1X5E15.9)

160 202FORMAT(E15.9)

170 203FORMATC(I 1)

180 204FORMAT(I 3)

190 NMAX=500

2060 YMAX=NMAX

210 JMAX=6

220 X1=0.388000

230 X0=1.0

240 CX1=0.380000

258 CX0=1.98500

260 XR=X0-XI

270 ALCXI=LOG(CXI)

280 ALCX0=LOG(CX0)>

297 ALCXOI=LOG(CX0/CXI1)>

30 ALRCXI=L0OG(1+0/7CXI>

310 ALRXI=LOG(1.0/XI)

320 TMIN=1e0/C1.0/(XI*kXI)=-10)%ALRXI/ALCXOI
330 TMAX=1e@/CC1e@/CXI*XI)~1+0)*%ALRCXI/ALRXI+2.8*ALCX0O)
340 PRINT202, TMIN, 3 PRINT,"™ < T < ", PRINT202, TMAX,3 PRINT, "
350 INPUT,T

360 AG=T*C(1.0/(XI%*XI)=-1.0)*ALCX0OI-ALRX]I

370 IFCA@) 1»1,2

38% i1PRINT,"AQ =", 3 PRINT202, AG
390 PRINT,"TRAJECTORY UNSTABLE"
400 GOTO98

410 2

420 0=AQ/ (ALCXO*ALRXI)
430 Al1=(1.0+0%xALCX0)/ALCXOI

440 PRINT,'NMAX =""»3PRINT204,NMAX
450 PRINT,""JMAX ='"s3PRINT203, JMAX
460 PRINT,"XI =", 3 PRINT202, X1
470 PRINT,"XO ="53 PRINT202,X0
480 PRINT,'CX1 ="y 3PRINT202, CX1I
49¢ PRINT,'"CXO =", 3PRINT202, CX0
5a@ PRINT,"T ="y 3 PRINT202, T
510 PRINT,'"Q =", 3 PRINT202,Q
5280 PRINT,"A1 =",3PRINT202, Al
530 D09@J=1,JMAX

S40 KS=1

550 KSQRT=0

560 PRINT,*'"IN ITERATION '"»3PRINT203,J

S70 PRINT,

S80 RFOS=A1¥ALRXI-QkkHF(NMAX)-T*(1e B/ (XI*¥XI)=1e0)
590 IFC(RFOS)Y3,45 4
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ORB12 CONTINUED

600 3

610 FO=1.0/SQRTCABSC(RF(0S5))

620 GOTOS

630 4F0=1.08/SQRTCRF0S)

648 SPRINT,"F(XI) ="»3PRINT202,F0

6 50 DO3BN=1,NMAX

660 Y=N

670 1F(J-1)9856514

686 6

690 S5=SINCPIOZ2X%Y/YMAX)

700 C=COSC(PIO2¥%Y/YMAX)

710 IF(N-NMAX/2)11511512

720 11X=XI+XR*%(2.0)%SkS5kS*kS

730 G0TO13

740 12X=XI4+XR*(1.0-2¢0%CkCkCkC)

750 13XF(N)=X

760 14

T70 RFS=A1%LOGC1eB/XF(N))I=-Qk(HF(NMAX)=-HF(N))=T*( 1B/ C(XF(NI*XF(N))=1.0)
780 IF(RFS)15,16,516

796 15F=1.0/SQRT(ABS(RFS))

800 KSART=KSGERT+1

818 GOTO17

820 16F=1e0/SQRT(RFS)

830 17IF(N-1)98,21,22

840 21GU=(FO+F)*(XF(1)=XI)/2.0

850 GOTOZ26

860 22GU=GU+(FO+F)* (XF(NY-XF(N-1>)/2.9
870 GOTO(23,26)KS

B8A 23IF(N-25)26,26524

890 24IF(F0-F)25,25,26

92030 25KS=2

918 FMIN=FO

920 NFMIN=N~1

930 RHOMIN=G*FMIN/ ( GUMAX*XF(NFMIN))
9 40 26F0=F

958 GF(NY=GU

9 60 30

970 PRINT,"FMIN ="»3PRINT202, FMIN
980 PRINT,"NFMIN ='"»3PRINT204,NFMIN
990 GUMAX=GU

1000 PRINT,"F(X0) ='",3PRINT202,FO
1818 PRINT,"GUMAX =",3PRINT232, GUMAX
1023 DO 40N=1,NMAX

1036 DUMMY=GF(N)

1040 GF(N)Y=DUMMY/ GUMAX

1850 40

1960 H=C(GF(1)/XFC1))*(XF(1)-X1)/2.0
1078 HF(1)>=H

1980 DHMAX=0.0

1090 DO6BN=2,NMAX
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ORB12

1100
11102
11206
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1258
1260
1270
1280
1296
1360
1316
13208
133¢@
1346
1356
1360
1374
13580
1396
1466
1410
1420
1 43¢
144
1450
1460
1476
143
1490
1500
1510
1520
153@
1540
1550
1560
1570
1580
1590

CONTINUED

H=H+(GF(N) /XF(N)+GF(N=-1)/XF(N=- 1)) *(XF(N)=XF(N-1)>/2.0
DH=HF(N)-H

IFCABS(DH)>-ABS(DHMAX))51551,59

SPDHM AX=DH

DELTA=DHMAX/(2¢@* (H+HF(N)))

NDHMAX=N

SIHF(NY=H

60

PRINT,"H(X0) =",3PRINT202,HF(NMAX)
PRINTs"DELTA ='",3PRINT202,DELTA

PRINT, ""NDHMAX=""s 3 PRINT20 4, NDHM AX

Q=AC/ (ALCXO*ALRXI+ (ALRXI-ALCXOI)*HF(NMAX))
Al=(1+P+0*x (ALCXO+HF(NMAX)>)>)/ALCXOI
A=(2e%T*ALCX0I> /(1 3-Cx (ALRCXI~-HF(NMAX3))
PRINTs *"KSQRT ='""53 PRINT203,KSQRT

PRINT, "G =",3PRINT202, 6
PRINTs "'Al =",3PRINT2062, Al
PRINT, "'A =", 3PRINT202, A

IFC1eB=-A)T05T71571

TOPRINT, "TRAJECTORY UNBOUND*

GOTO98

TIIFCA~C1e@/3e@))T25725,73

T2PRINT,"TRAJECTORY UNSTABLE"

GOTO98

T3IFCI=-IMAX)IOFBs 74598

74D0GEHN=15NMAX
VORDTS=1e@+T/(XFINY*XF(N)*C((1e0+Q%k(ALCX0O+HF(NMAX) D))
+*%(LOGC1eB/XF(NII/ZALCXOI) - Q¥ (HF(NMAX)~HF(NY))
+=T*(1eB=XF(NY*XF(N)))

VORDT=SG@RTC(ABSC(VORDTS)Y)

IF(N=1>98,75,76

75SVORDT=VORDT*(XF(1)-XI)

G01077

T76SVORDT=SVORDT+(VORDTO+VORDT)* (XF(N)-XF(N~-1))/2.0
77VORDTO=VORDT

80

20

PRINT, t 1" RHOMN*="", 3 PRINT202, RHOMIN

PRINT, "<V>% =",3PRINT202, SVORDT
PXI=(ALCXO+ALRXI-E* (ALCXO+HF(NMAX)> ) * (ALRCXI~-ALKRXI)>)/ALCXO0I
PRINT, ""PX1I =", 3PRINT202, PXI

PXO=(1.0-0% (ALRCXI=-HF(NMAX))>)* (ALCX0O/ALCXO01)

PRINT, ""PX0 ="y 3 PRINT202, PX0

PRINT,"P/PB)0=""53 PRINT202, PXO*xALCXOI /ALCXO
PRINT,""H/TX0O ="53PRINT20251.3=-PX0/T
PP1=S@RT(2.0% 1+ 602E-19/9+«11E-31)

PRINT, ""PP1 =",3PRINT202,PP1
PP2=2+.0%PI1%8¢85E~ 12/ 1+ 602E~ 19
PRINT, ""PP2 ="5»3PRINT202, PP2
PRINT,"PP3 =", 3 PRINT2082, PP1*xPP2
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ORB12 CONTINUED

1600 PRINT,"N.+L* =',3PRINT202, SVORDT*Q/ GUMAX

1618 PRINT,"Ne+L*%=", 3 PRINT202, SVORDT* @kPP 1 x PP2/GUMAX

1620 PRINT,"<V>%* =%, 3 PRINT202, SVORDT*PP1/GUMAX

1630 PRINT,"TAU%* =",3PRINT202,2.0%GUMAX/PP1

1649 PRINT,*NL**x =",3PRINT202,8%PP2

1650 WRITEC1,201)11,NMAX, 12, IJMAX5 13sX15145CX15155CX05 165 TMINs 175T»
1660 +18,TMIN, 19, GUMAX,20,0521,A1,22,XR»23,ALCX1,245ALCX0,25,ALCXO0I>»
1670 +26,ALRCXI,275ALRXI,28,A0, 29, RHOMIN, 30> SVORDT

1680 PRINT,"PARAMETERS WRITTEN ON FILE 1°

1690 WRITE(2,200) C100+N,XF(N)sN=1,NMAX)

1760 PRINT,"XF(N> WRITTEN ON FILE 2"

1710 WRITEC4,200) C(1008+Ns GF(N) »N=1,NMAX)

1720 PRINT,"GF(N) WRITTEN ON FILE 4"

1730 WRITEC(6,2080) C180+N>HF(N) »N=1,NMAX)

1740 PRINT,"HF(N) WRITTEN ON FILE 6"

1750 PRINT,*tt"TO CONTINUE: CALL ORB2 (CHANGE TO PLO)>"

17680 GOTO99

1770 98STOP"ERR"

1780 99

17906 $OPT TIME3 $SOPT SIZE

1800 END

ORB22

2000C THIS PROGRAM PLOTS THE COORDINATE AXES FOR PHI (X)) G(X)»
2010C AND RHO(X>e. IT IS WRITTEN FOR A 5 MILL PLOTTER DRIVEN BY
2020C THE C-A~C GE265(NO CALL TO FACTOR).

2030C IT READS THE FILES GENERATED BY ORB1 AND USES THIS DATA TO
20644C PLOT OR CALCULATE AND PLOT PHICX), GC(X)s, AND RHOC(X).
2050C RHOC(X)> IS PLOTTED AS RHO/14Q.

2060C THE PROGRAM MOVES THE PEN TO THE NEXT PAGE.

2078 $OPT PLOT

2080 SFILE AL,XL1/XL2,GL1/GL2,HL1/HL2
2090 DIMENSION XF(58@), GF(500),HF(500)
210080 201FORMAT(IZ2,» 1XsE15.%)

2110 202FORMAT(E15.9)

2120 390FORMAT(3XsE15.9)

2130 321FORMAT(4XsE1549)

2140 204FORMATCI 3D

2150 CALL PLOT(Q:05s8+085-3)

2160 CALL PLOT(C12.050+052)

21790 X=12.0

2180 Y=0.0
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ORB22 CONTINUED

2196 DOIM=1,11

2200 CALL PLOT(X,Y»3)

2210 CALL PLOT(X,Y+B.08,2)

2220 1X=X=1.2

2230 X=~-0.16

2240 Y=0e16

2250 FPN=0.0

2260 DO2M=1,11

227w CALL NUMBER(XsYs@el16sFPNsBeBs2)
2280 X=X+1.2

22917 2FPN=FPN+@.1

2300 CALL PLOT(Q.0s0¢053)

2310 CALL PLOT(QeBs=-16¢3,2)

2320 X=0.0

2330 Y=-16.0

2340 DO3M=1,11

235@ CALL PLOT(X,Y,»3)

236 CALL PLOT(X~B.B88sY»2)

23704 3Y=Y+1.6

2380 X==0. 32

2390 Y=0e16

24000 FPN=0G.0

2416 DO4M=1,11

24270 CALL NUMBER(X»Y»De 165 FPN»2T70.052)
2431 Y=Y=1e6

2440 4FPN=FPN+0.1

2450 CALL SYMBOL(=0e 745=T09050e¢305"X"527085 1)
246 CALL PLOT(G.0s0e@5s-3)

2479 1061PRINTS""START READ"

2450 READC(15300)NMAX» JMAXs X1 s CXI»CX0sWsTsWs GUMAX, Qs AlsXR»
2493 +ALCXI»ALCX0sALCX0I»ALRCXI»ALRXI»AQ
2500 PRINT,"READ 1"

2510 READ(2,3G1)(XFI(N)»N=1,NMAX)

2520 PRINT,"READ 2"

25308 READC4, 301)Y(GF(N) »N=1,NMAX)

2540 PRINT,"READ 4"

2550 READC6,301)(HF(N)Y»N=1,NMAX)

2560 PRINT,'"READ 6"

2570 A2=ALCXO+HF(NMAX)

2580 DO20N=1,NMAX

2593 P=(ALCXO-LOG(XF(N))Y)/ALCXOI-0%((A2/ALCX0I)*(LOG(XF(N)Y)>+ALRCXI)
2600 +=-HF(N))Y

26170 X=(12.@)%P

2620 Y=(-16.000)%XF(N)

2630 CALL PLOT(X,Y»3)

2640 20CALL PLOT(X,Y»2)

2650 CALL PLOT(Be0s005-3)

2660 DOTON=1,NMAX

2670 X=C(12.D*%GF(N)

2680 Y=(=16.000)%XF(N)
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ORB22

2690
2700
2710
2720
2730
2746
2750
27609
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940

ORB3

30066
3010
3020
30830
3040
3850
3060
30870
380
3099
3100
3110
3120
3138

CONTINUED

CALL PLOT(X»Y»3)

CALL PLOT(X»Ys»2)

70

CALL PLOTCDeDsBeBs-3)

KT=0

NMAXMS5=NMAX=~5

DO9 5N=5,NMAXMS

F1=Qx (HF(NMAX)-HF(N))
Fo=T*(1eQ/CXFC(NI*XF(N))=1¢8)
RFS=A1%LOGC(1.3/XFC(N))-F1=-F2
IF(RFS) 75, 76576
TS5F=1.0/SQRTC(ABSCRFS))
KT=KT+1

GOTO8®G

T6F=1.0/SQRTC(RFS)
8ARHO=Q%F/ ( GUMAXXkXF(N))
IFCRHO~ 10090590595
9@X=(1.2)%RHO
Y=(=-16+008)*XF(N)

CALL PLOT(X,Y,»3)

CALL PLOT(X»Y»2)

95

CALL PLOTCD+0s0e0s~3)

CALL PLOT(C18¢75508.0,-3)
PRINT,"KT =", 3 PRINT204,KT
END

$0PT PLOT

DIMENSION XIC7)

CALL PLOT(GBe0508¢05-3)
CALL PLOT(12.05s0+052)
X=12.0

Y=0+0

DOIM=1,11

CALL PLOT(XsY,»3)

CALL PLOT(XsY+0.08,52)
1X=X=-1.2

X==0.16

Y=0e16

FPN=0@.0

DO2M=1511
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ORB3 CONTINUED

3140 CALL NUMBER(XsY,@e16s FPNs@e0s2)
3150 X=X+1.2

3160 2FPN=FPN+@. 1

3170 CALL PLOT(Q¢@,0.%,3)

3180 CALL PLOT(ZeBs=160052)

3190 X=0.0

3200 Y==16+0

3210 DO3M=1s11

322@ CALL PLOT(XsYs3)

3230 CALL PLOT(X-0.085Ys2)

3240 3Y=Y+1.6

3250 X=-0.32

3260 Y=0.16

3270 FPN=@.+0

3280 DO4M=1511

3290 CALL NUMBER(XsYs@e165FPN»270e352)
3300 Y=Y-1.6

3310 4FPN=FPN+@.1

3320 CALL SYMBOL(-@eT45=Te90sBe305 " "XI"52700052)
3330 CALL PLOTC@.0s@00s-3)

3340 NMAX=7

3350 DO15N=1,NMAX

3360 REANsXT (N)

3370 15

3380 DO2BN=1,NMAX

3390 READ,T

3400 X=12.0%7T

3410 Y=-1640%XI (N)

3420 CALL PLOT(X,Y.,3)

3425 CALL PLOT(X,Y,2)

3430 CALL SYMBOL(XsYs@e 135" T"s27@+0s 1)
3446 28

3450 CALL PLOT(Q.0s@e0s=-3)

3460 DO25N=1,NMAX

347G READs O

3480 X=12.00%0Q

3490 Y=-1640%XT(N)

3500 CALL PLOT(X,Ys3)

3505 CALL PLOT(X,Ys2)

3510 CALL SYMBOL(XsYs@e135"6"5270.05 1)
3520 25

3530 CALL PLOT(G+0s@eGs~3)

3540 DO3GN=15NMAX

3550 READ,P

3560 X=124G%P

3570 Y==16.@%XI(N)

3580 CALL PLOT(X,Y»3)

3585 CALL PLOT(X,Ys2)

3590 CALL SYMBOL(XsYs@e135"P"527@+05 1)
3600 30
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ORB3

3618
3620
3630
3640
3659
3660
3665
3670
3680
3690
3700
3710
3720
3730
3740
3745
3750
3760
3770
3780
3790
3800
3810
3820
3825
3830
3840
3850
3860
3870
3880
3899
3900
39¢5
3910
3920
3930
3940
3950
3960
3974
3980
3990
4000
4010
4020
4030
4040

CONTINUED

CALL PLOT(Q«GsBe@s~3)

DO35N=1sNMAX

READ, Al

X=12.0%A1

Y==16e @%kXI(N)

CALL PLOT(X5>Y,» 3

CALL PLOT(X,Y,2)

CALL SYMBOL(XsY50s135"1+"5,2700,2)

'35

CALL PLOTC(B«05B:05-3)

DO 4dN=1,NMAX

READs R

X=12.0%R

Y==16¢0%XI(N)

CALL PLOT(X,Y>»3)

CALL PLOT(XsYs»?2)

CALL SYMBOL(XsY»@e135"R"5270+651)
47

CALL PLOT(Be0500s=-3)

DO45SN=1,NMAX

READs V

X=12. 0%V

Y==16«P%kXTI (N)

CALL PLOT(X>Y»3)

CALL PLOT(X-Y»2)

CALL SYMBOL(XsYs»@e135"V"5s270e05 1)
45

CALL PLOTC(QGeBs0e0s~3)

DOS@N=1,NMAX

READs G

X=12. 0% G

Y==160*xXI(N)

CALL PLOT(XsYs3)

CALL PLOT(X»Ys2)

CALL SYMBOL(XsY»@e13,"G"»270.051)
50

CALL PLOT(@e@s0Be@s—3)

CALL PLOT(C18¢755s0ePs~3)

END

$DATA

e 1005 ¢« 2505 e 3285 « 50105 o 60115 « 7505 « 220
e 1095 e D615 01475 «e2435 « 3505 « 55@5 790
e 4765 e6865¢TI55e812507T5s 06145 6 329
e 0595 62445 « 4335 ¢59 35072558835 +978
0133502965 ¢4415 e5265¢5635¢514,5, 287
ePB2s s B9Ds e 17355 e118501315e1535¢177
e 1255 0165520352335 ¢ 2605 «3335 360
e 4469 e 3865 e367T5 3595 35953635386
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In ORBl2 a convergence test is performed on hi{x) during
each iteration. This is done by computing the difference.
hj.;(xq) - hyj(xp) for all n , and then sorting out that value
of n for which this difference has the largest absolute value
The maximum relative difference between h(x) generated in two

successive iterations 1is then formed by computing

.- IhJ=l(Xn) - hy(x))
%'hj_l(xn) + hJ (Xn)

where n has the value determined above The value of n may
change (and generally does) in each application of the above
convergence test., However, it 1s found experimentally that the
value of A is monotone decreasing. 1f T satisfies the
stability criterion It is also found that the rate of con-~-
vergence {the decrease 1n A per iteration) depends on the
value of T , within the stabile range (as well as on the other
parameters), such that the rate of convergence increases as T
decreases. This is to be expected since a decreasing T 1im-
plies a decreasing Q . A and the value of n at which it is
evaluated are printed during each iteration so that execution
may be aborted if 4 does not approach zero.

It was found that A was within the range 107°® < A < 10-4
if T satisfied the stability criterion and at least 5 but not
more than 10 1terations were executed. It appears that A may
be made to approach the rounding error limit of the machine
(~5 x 1078 for the GE 265) by performing a sufficiently large
number of iterations. This was verlfied in a machine experiment -
in which, after 7 iterations, A <10~7 and thereafter fluctuated,
positive and negative, but such that |a|<10~7 in all subsequent

iterations,
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The above tests for convergence of h(x) still leaves
open the question of uniqueness of the solution. That is, for
the prescribed parameters is the final h(x) the only hix)
posible? A machine experiment was conducted in which the
starting function, the initial h,(x) , was varied over a wide

range. It was found that the final (x) was the same

hJ
function, A<10"7 , (A = relative diffeizzce between any two
final thax(x)) for all h (x) , completely independent of
the definition of the initial h,(x) , From these tests it is
considered highly probable that all convergent solutions for

h(x) are unique.

RESULTS

An orbitron parameter survey was made in which all para-
meters, except Xx;/X; , were varied over most of their useful
or allowed range, and convergent, self-consistent solutions
for h(x) were obtained for each set of parameters. The para-
meter xi/X{ was not varied since it was shown in a previous
section that Q was maximized with respect to x by setting
X;/¥; =1 + 68§ where § << 1 . This analytical result was how-
ever tested by obtaining a number of self-consistent solutions
i Wwhile holding all
other prescribed parameters constant. The machine results

for a number of different values of x

verify the analytical conclusion, Eg. (67).

From the self-consistent solution for h(x) , the functions
listed in Table II below; were computed and plotted. Since the
curves are not all plotted to the same scale, the value of the

ordinate applicable to each curve is also given in the table.
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TABLE Il

For Figs. 3 thru 9, Figs. 1l thru 17, and Figs. 19
thru 22,

CURVE LABLE FUNCTION ORDINATE FULL SCALE
_ t(x)
G = (x) = 1.0
g 1%
- 2
- Yo pix) - Q fix) 10.0
P - ev G x ‘
¢ = ¢ (x) 1.0

The curves are plotted in dimensionless form, H (the electron
Hamiltonian) was taken as family parameter and three sets of
results are presented, corresponding to the following three

values of H
H -0.4
& 0.0
T{x5) +0.55

Following each of these three sets of graphs a summary of
pertinent parameters 1s presented in graphical form, The para-

meters plotted in these summary graphs are listed in Table I1III.

46



TABLE III

For Figs. 10, 18, and 23

CURVE
LABLE
7(x,) o
T = =7 Outer turning point kinetic
energy
eNL
Q 7 wrzm Np G Number of electrons per
unit length
p = 92(1) . (space charge dependent potential)
- Inxo (charge free potential)
X0
ln—
Xi
= T . Q .
I+ = 5~ V> & Ion production rate
[&]
-]
-+
n c(<v>)[2ﬂ£!}[2§¥]%
g e m
(ﬁt = number of ions produced per unit
time)
(ng Z gas number density)
r %p(x)
- [o] s . .
R = = —T minimum charge density
min
v = 7%— <v> mean velocity
X
G = [E%Z] 7%_, orbit period
e}

417

ORDINATE
FULL

_SCALE _

1.0

1.0

1.0

r=sr
(x=1%

10.0

10.0

10.0
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\ Fig. 3
) a Xg = 0.0980 |
d x4 = 0.1000 ;
X, = 1,9850
T = 0.0099
g ¢ = 4.481
' h(1) = 0,3420 i
A = 7.9789 x 10°5
e Q = 0.4741
™ as = 0.9746
<v>T/2r, = 1.2478
8 $5(x1) = 0.9900
i 65 (1) = 0.0139
$2(1)/9o(L) = 0.0609
3] H/T(l) = 0.4069
2]
b
3.
8.
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Fig. &4

Q Xi = 0.2450

al xq = 0.2500 '
Xo = 1,9850
T = 0.0600 :

2 G = 3.8889 :

' h(1) = 0.3035 ]
A = 1,5767 x 107 ° !
Q = 0.6745 ;

(=]

= ag = 0.9806 |
Pmin = 0.8820 /
<v>T/2r, = 1.6572

R 2(x1) = 0.9839 /

i d9(1) = 0.08390 /
$5(1)/$o(1) = 0.2560
HI1(1) =-0.3984
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Q. Fig. 5
a X4 = 0.3850 '
Xi = 0-3860 .
(o I
' \ T = 0,1400 i
N ¢ = 3.6946 1
.\'-._ h(l) = 0.2579 1
8- A = 4,4338 x 10”4 i
Q = 0.7568 [
ag = 0,9712 /
2] <v>1/2ry = 2,0117 I
. ¢2(xi) = 0,9973 !
$5(1) = 0.1977 /
g w 09(1)/¢o(1) = 0.4727
"7 . " H/T(L) =-0.360
2. z
. -: . b
2]
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g- - o,
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e
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- Fig. 6
Xy = 0.4900
g x{ = 0.5000
. Xy = 1,9850
T = 0.2230
G = 3.7600
8- h(1) = 0.2120 )
A = 4.0492 x 106 -
Q = 0.7456 :
[=] as = 0.9964 .
| — .
. Pmin = 1.0811 :
<v>T/2r = 2,3328 .
$o(x1) = 0.9759 :
25 92(1) = 0.3069 -8 ;
$o(1)/6 (1) = 0.6262 4 )
H?T(l_) =-0,3762 :
'-.:x:,...- :.:
2. N
g-' i P \\
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Fig., 7

€1 = 0,5900
2] X4 = 0.6000
' X, = 1.9850

T = 0.3100
o G = 3.8199
8. h(l) = 0.1721

A = 3,6018 x 10”6

Q = 0.6880 :
=3 Og = 0.9958 j 9
- Omin = 1,1602 :

<v>T/2r, = 2.6098

$2(x;) = 0,9780
2 ¢2(1) = 0.4269

$2(1)/9o(1) = 0.75536 :
o H/T(1) =-0.3770 :
s : ¢
2.
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] Fig, 8

| Xy = 0.7400
&+ xq = 0.7500

H X5 = 1.9850

ﬁ T = 0.4500
o! G = 3,9124
= h(1) = 0.1133

‘7 A = 5,075 x 10~ 3

Q = 0.4885

R4 ag = 0.9778

' O s = 1.2447

| <v>t/2r, = 2.9686
2. $2(x1) = 0.9811

" $o(1) = 0,6311

| 92(1)/9,(1) = 0.9082 :

’ H3T(1) =.0.4024 :
2. ;_

o | ; ;!!

i i
\ / ]

8.
=}
o
. 10 .20 30 .40 §0 60 .70 .80 .50 .



124

e
Fig. 9
X = 0.8900
=2 x4 = 0.9000
- X, = 1,9850
T = 0.6100
i G = 4.3472
- h(1l) = 0,04629
A = 7,2077 x 10”3
Q = 0.2355
o a = 0.9951
™ p;in = 1.3637
<v>T/2r° = 3.5602
o (%1) = 0,9837
$5(1)/¢ (1) = 0,9835
H;T(l) =-0.3780
2
=4
2
8
=
N
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- Figo 10 /’,—-
-3 H= - 0.4 P
‘| Summary of data from Fig.s 3 thru 9
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PO

X4 = 0.0980 I
= = 0.1000 i
XO = 1.6500 :
T = 9,895 x 10" 3 ;
G = 4.4618 I:
A = 9.8510 x 10~ " l.
Q = 0.4755
0.3 = 0.9557
Pmin = 0.8158
<v>t/2r, = 1.2475
gay = 0.9900
¢5(1)/$ (1) = 0.0585
H?T(l) - 0.058
‘\\~ ...................
/
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Fig, 12 .
xi = 0.2450 .
! X4 = 0.2500 1
X, = 1.6500 1
T = 0,6130 i
¢ = 3,8314 f
h(1) = 0.3047 [
A = 3,0825 x 10~ 5 I3
Q = 0.6862 [
@ = 0.9585 I
<v>1/2r = 1.6533
Po(xs) ° = 0.9835
65(1) = 0.6405
$2(1)/¢,(1) = 0.2439
H/T(1) =-0.045
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0.3800
0.3880

] o = 1.6500
™ T = 0.1470
\ G = 3.6571
ﬁ h(1) = 0.2549 s
2 . A = 5.5279 x 10
' : Q = 0.7949 |
' ag = 0.9959 .
e I P nin = 1,0450 :
B : M2 =2.0301 /-
) ¢ 9(x1) = 0.9773 L
2 : 05(1)/9 (1) = 0.4335 ;o
' : H/T(1) =-0.0056 A
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= Fig. 14
Xi = 0.4900

=3 Xq = 0.5000

' X, = 1.6500
T = 0.2430 :

o G = 3.5944 ;

©- h(1) = 0.2123 . _ | _
A =-4.3523 x 10° : /
Q = 0.8117 : _ :

2. as = 0.9945 . /

' Pmin = 1.1773 : ]
<v>T/2r = 2.3310 : ,,
9o (%4) = 0.9737 : - @ /

2. 95(1) = 0.2647 : /
92(1)/po(1) = 0.5933 : y
BfT(1) © =-0.0071 ;
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] Fig. 15 |
Xy = 0.5900 : .
& Xq = 0.6000 : :
| Xo = 1.6500 : .
T = 0.3500 _ .!
G = 3,5867 . \ ]
&, h(1) = 0.1724 : ]
A = 3.0415 x 10™° , /
Q = 0.7749 ; /
e g = 0.9933 , /
y Pmin = 1.3098 ; x ;
9o (x1) = 0.9751 :
& 6213 = 0.3529 ..
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Fig, 16
X = 0,7400
8- x{ = 0.7500
X, = 1,6400
T = 0.5500
g | G = 3,6253
® h(l) = 0.1110
A =-,030891 x 1073
Q = 0,6139
S &g = 0.9910
| Pmin = 1.5293
<v>t/2r, = 3.0338
2] $o(x4) = 0.9769
’ ¢, (1) = 0,5491 ‘p
$2(1)/9,(1) = 0.8833
g H/T(1) = 0.00167
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Fig., 17

Xy = 0,8900

=3 X5 = 0.9000

' X, = 1,6500
T = 0,7900

- G = 3,8626

®© - h(l) = 0,4590
A = 1,254 x 107"*
Q = 0,3086

=3 g = 0,9971

: O = 1,7690
<v>T/2r, = 3.5975

2| 9 (x1) = 0,9788

: ¢, (1) = 0,7935
$,(1)/6,(1) = 0.9782

3. H/T(1) =-0,4478
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Fig. 18
(=] = O‘
1 Summary of data from Figs. 11 thru 17 _
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Fig. 19 '

X = 0.4900 \ .
=3 Xq = 0.5000 N )
' X = 1.2500 S\ .

T = 0.2800 CN |
o G = 3.2887 TN ]
& h(1) = 0.2161 Y !

A = 2,0159 x 10~° - '-

Q = 0.9161 I /I
Q] Os = 0.9631 I8
- P = 1.3551 /

<v>T/2r = 2.2970 .-'!
o ¢ (x1) = 0.9697 : f
@ ¢ (L) = 0.1297 :
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Fig. 20
Xy = 0.590
8. x4 = 0.600
' X, = 1,250
T = 0.4350
o ¢ = 3,2155
@ h(l) = 0.1726
A = 4.4691 x 10~
Q = 0.9615
2] ag = 0.9917
Pin = 1.6409
<V>T/2ro = 2.6010
g 0o (xq) = 0.9691
34 $,(1) = 0,1958
$o(L)/9 (1) = 0.6587
g H/T(1) = 0.5500
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Fig. 21

PU.U

X = 0,740

x5 = 0.750

X = 1,250

T = ,7850

G = 2,9895

h(l) = 0.1124

A = 8.8623 x 10~ 3
Q = 0.8617

s - 2i7ma2

Pmin T L.

<v>T/2r° = 2.99388

by (x4) = 0.96699

$,5(1) = 0.35644
d9(1)/d (1) = 0.8374

H/T(1) = 0.5459%
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Fig. 22
Xy = 0.890
= Xy = 0.900
. X, = 1.250
T = 1,400
o G = 2,7044
S h(1) = 0.0478
A =1,1886 x 10”5
Q = 0,503
2] g = 0,985
- Puin = 3,023
Py = 3,361
v T/2r°
g 2 (x1) . = 0.,9626
2 ¢,(1) = 0.6342
$2(1)/do(1l) = 0.9654
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Fig. 23

H = 0.55
Summary of data from Figs. 19 thru 22
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Application

Below,; a particular orbitron solution is applied to a

particular orbitron configuration. The machine solution

selected is neither a maximum or minimum solution but only

typical. From the data of Fig. 18
Xi = 0,490 (Machine Record)
X, = 0.500 (Machine Record)
T(1) _
v = 0.243 (T Curve)
eNL
STEV = 0.811 (Q Curve)
Q
Nt 3
L T = 0.526 %; <v> % , I+ Curve
n ol<v>) 2TeEV EEX 2
g e m
2; <v> = 2,33 (V Curve)
[s]
1
[393]2 I _ = 3.59 (G Curve)
m 2ro
o, = 0.994 (from machine record)
X = 1.65 (from H=0)
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Prescribe:

Outer turning point kinetic energy = T(1l) = 100eV
2.5 x 1072 m

Outer cylinder radius = R,

Then from these data it follows:

) _ _ 2.5 x 1077

Outer turning point radius = r, = —1.g% "
= 1,52 x 107% m
Anode radius = R; = (0.49) (1.52 x 10™2)
= 0,743 x 1072 n

Anode voltage = V = 100 = 412 Volts

g€ = 0.243

Number of electrons _ . _ 2n(8.85 x 10-12)(0.811)

unit length I ' 1.6 x 10-19

1.16 x 1011 mp-1

(= 1.16 x 102 cm~1)
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_ _ 1.18(8.85 x 10712) (412)
min (1.52 x 10-2)2

Minimum Charge Density = p

- 1.86 x 10-5 C/m?3

(= - 1,86 x 10-11 c/cm3)

number of electrons . Pmin _ -1.86 x 1071!
unit volume -e -1.6 x 10-19

Minimum

= 1.16 x 108 cm~3

-31 X
Orbit Period = T (3.59) (3.03 x 10—2)( 9.1 x 10 }

3.2 x 10-19(412)

9.0 x 10~° sec

= m 2
<T> = <>
.2- .

1]

Average Kinetic Energy

_ 9.1 x 10731 [(2.33) (3.03 x 10-2)
‘ 9 % 10-°

= 2,82 x 10-!773

175,5eV)

~~~
Il

Argon Cross Section = og,, (<T> = 175.5eV)= 2.9 x 10720 n?
T

m

Ion Current - L 2ev)s
unit‘length'ng ~n (0.526) OAt (2“€v)[ ]

-21 ALl
4,2 x 10 =

g

=g

71



o o
eN? eNt
Ion Current - L _ L (3.2 x 1022)

unit length+*Torr ~ P

T g
= 137 AP
m Torr

[:-\1.37 _Amp__ ]
cm Torxr

+
Ionic Pumping Speed . _ L -, m3 1
unit length = 5L E; 2.6 x 10 sec m

- 0.6 Liters
¢ sec cm

The above example is a rather low voltage device, Con-
sider now the effect resulting from increasing the outer turn-
ing point kinetic energy by an order of magnitude. If it is
prescribed that T(ro) = 10%eV , and all other prescribed
parameters remain as above, the geometrical parameters do not

change and the derived parameters are as follows:

Anode oltage: V = 4120 volts

Number of electrons _ 10 -1
GRIT 1ength : N = 1.16 x 10 cm

Orbit period: 1t = 2.85 x 1072 sec

Average kinetic energy: <T> = 1755 eV

Argon cross section lat <T> = 1755eV): 0,4+ x .79 x 10~ lécm’
> r
Ion current R eNL = 11.9 -_AMp
unit Tength.Torr ° P =7 cm Torr
Ionic pumping speed | S = 2.24 liters
“unit length YL * sec cm
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CONCLUSIONS
From the results presented it may be concluded that:

(1) The total charge stored in unit length of the
rotating electron cloud is maximized if the inner
turning point is near the anode, Q(xi)|max T x, =

1
Xi + &, 6<<1 .

(2) The total charge stored in unit length increases
as the electron Hamiltonian increases or as the
ratio of outer cylinder radius to outer turning

point radius decreases (which are equivalent).

(3) The total charge per unit length considered as a
function of the anode radius exhibits a maximum
and that this maximum is shifted toward larger
anode radii as the Hamiltonian increases or as Xo

decreases.

{(4) The ion production rate considered as a function
of anode radius exhibits a maximum but which does
not coincide with the stored charge maximum,

(5) The ion production rate increases as the Hamiltonian

increases or X = decreases.
(6) The potential distribution modification resulting

from the space charge insertion is a strong function

of the anode radius, decreasing as X, increases,
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(7)

(8)

(9)

(10)

The potential distribution modification resulting
from the space charge 1nsertion is only a weak

function of X, v increasing with X, .

The outer turning point kinetic energy is a strong

function of anode radius, increasing with X_l .
The orbit period, the electron mean velocity, and
the minimum charge density are weak functions of

both X, and X .
1 o]

Maximum orbital stability corresponds to maximum

space charge.
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